Chapter 3: Equilibrium of a particle

Applications

For a spool of given weight, how would you find the forces in cables AB and AC ? If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn't fail.

For a given force exerted on the boat's towing pendant, what are the forces in the cables BC and BD? What size of cable must you use?

Equilibrium of a particle

According to Newton's first law of motion , a particle will be in equilibrium (that is, it will remain at rest or continue to move with constant velocity) if and only if

$$
\sum \boldsymbol{F}=\mathbf{0}
$$

where $\sum \boldsymbol{F}=\mathbf{0}$ is the resultant force vector of all forces acting on a particle.
In three dimensions, equilibrium requires:

Coplanar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes

This is an example of a 2-D or coplanar force system.
If the whole assembly is in equilibrium, then particle A is also in equilibrium.

To determine the tensions in the cables for a given weight of cylinder, you need to learn how to draw a free body diagram and apply the equations of equilibrium.

Free body diagram

Drawing of a body, or part of a body, on which all the forces acting on the body are shown.

Equilibrium of a particle (cont.)

Contact force in smooth surface:
Consider now the uniform sphere of weight W , supported by smooth (frictionless) surfaces. Because the contact surfaces are smooth, the forces exerted on the sphere by the planes must be perpendicular to the surface.

Free-body diagram

Idealizations

Pulleys are (usually) regarded as frictionless; then the tension in a rope or cord around the pulley is the same on either side. Springs are (usually) regarded as linearly elastic; then the tension is proportional to the change in length s.

Frictionless pulley

$$
F=k s=k\left(l-l_{0}\right)
$$

Linearly elastic spring

A 4 kg sphere rests on the smooth parabolic surface. Determine the normal force it exerts on the surface and the mass m_{B} of block B needed to hold it in the equilibrium position shown. The given parameters are: $x_{1}=0.4 \mathrm{~m}, a=2.5 \mathrm{~m}^{-1}, \theta=60^{\circ}$.

Determine the unstretched length of spring AC if a force $\mathrm{P}=80 \mathrm{lb}$ causes the angle $\theta=60^{\circ}$ for equilibrium. Cord AB is 2 ft long. Use the spring stiffness $\mathrm{k}=50 \mathrm{lb} / \mathrm{ft}$.

Equilibrium of a system of particles

Some practical engineering problems involve the statics of interacting or interconnected particles. To solve them, we use Newton's first law

$$
\Sigma \mathbf{F}=\mathbf{0}
$$

on selected multiple free-body diagrams of particles or groups of particles.

The five ropes can each take 1500 N without breaking. How heavy can W be without breaking any?

Therefore, the critical tension is reached simultaneously in ropes (2) and (3)

Free-body diagram of the weight:

(b)

Determine the maximum mass of the lamp that the cord system can support so that no single cord develops a tension exceeding 400N.

3D force systems

This shear leg derrick is to be designed to lift a maximum of $\mathrm{M}=200 \mathrm{~kg}$ of fish. Find the magnitude of the forces acting in the cable and derrick legs? Use $a=h=4 \mathrm{~m}$. What happens to these forces when the offset distance decreases, i.e., during the lifting of the fish net until the legs are at a perpendicular position?

